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Abstract
The declining price anomaly states that the price weakly decreases when multiple
copies of an item are sold sequentially over time. The anomaly has been observed
in a plethora of practical applications. On the theoretical side, Gale and Stege-
man (Games and Economic Behavior, 36(1), 74–103, 2001) proved that the anomaly
is guaranteed to hold in full-information sequential auctions with exactly two buyers
when one item is sold in each time period. We prove that the declining price anomaly
is not guaranteed in full-information sequential auctions with three or more buyers.
This result applies to both first-price and second-price sequential auctions. More-
over, it applies regardless of the tie-breaking rule used to generate equilibria in these
sequential auctions. To prove this result we provide a refined treatment of subgame
perfect equilibria that survive the iterative deletion of weakly dominated strategies
and use this framework to experimentally generate a very large number of random
sequential auction instances. In particular, our experiments produce an instance with
three bidders and eight items that, for a specific tie-breaking rule, induces a non-
monotonic price trajectory. Theoretical analyses are then applied to show that this
instance can be used to prove that for every possible tie-breaking rule there is a
sequential auction on which it induces a non-monotonic price trajectory. On the other
hand, our experiments show that non-monotonic price trajectories are extremely rare.
In over eighteen million experiments only a 0.000183 proportion of the instances
violated the declining price anomaly.
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1 Introduction

In a sequential auction identical copies of an item are sold over time. In a private
values model with unit-demand, risk neutral buyers, Milgrom and Weber [23, 32]
showed that the sequence of prices forms a martingale. In particular, expected prices
are constant over time.1 In contrast, on attending a wine auction, [2] made the sur-
prising observation that prices for identical lots declined over time: “The law of the
one price was repealed and no one even seemed to notice!” This declining price
anomalywas also noted in sequential auctions for the disparate examples of livestock
[8], Picasso prints [25] and satellite transponder leases [23]. Indeed, the possibility
of decreasing prices in a sequential auction was raised by [28] nearly sixty years ago.
An assortment of reasons have been given to explain this anomaly. In the case of
wine auctions, proposed causes include absentee buyers utilizing non-optimal bid-
ding strategies [14] and the buyer’s option rule where the auctioneer may allow the
buyer of the first lot to make additional purchases at the same price [7]. Minor non-
homogeneities amongst the items can also lead to falling prices. For example, in the
case of art prints the items may suffer slight imperfections or wear-and-tear; as a con-
sequence, the auctioneer may sell the prints in decreasing order of quality [25]. More
generally, a decreasing price trajectory may arise due to risk-aversion, such as non-
decreasing, absolute risk-aversion [21] or aversion to price-risk ([22]; see also [16]).
Further potential economic and behavioural explanations have been provided in [4,
14, 30].

Of course, most of these explanations are context-specific. However, the declining
price anomaly appears more universal. In fact, in practice the anomaly is ubiqui-
tous: It has now been observed in sequential auctions for antiques [15], commercial
real estate [19], condominiums [3], fish [13], flowers [31], fur [18], lobsters [27],
jewellery [10], paintings [6], stamps [29] and wool [9].

Given the plethora of examples, the question arises as whether this property is
actually an anomaly. Declining prices are indeed an anomaly, even if empirically
common, for multiple reasons. In unpublished work, Milgrom and Weber showed
that with single-unit demand bidders, expected prices should increase rather than
decrease over time due to information release in earlier rounds. Additionally, [2]
observed that despite the fact that declining prices are common knowledge among
participants at wine auctions, even single-unit buyers often choose to buy at the
higher price rather than save money by waiting for later rounds. In groundbreak-
ing work on the theoretical side, [12] proved that this pattern is not an anomaly in
the equilibria of sequential auctions with two bidders. Specifically, in second-price
sequential auctions with two multiunit-demand buyers, prices are weakly decreas-
ing over time at the unique subgame perfect equilibrium that survives the iterative
deletion of weakly dominated strategies. Moreover, this result applies regardless
of the valuation functions of the buyers; the result also extends to the correspond-
ing equilibrium in first-price sequential auctions. It is worth highlighting here two
important aspects of the model studied in [12]. First, Gale and Stegeman consider

1If the values are affiliated then prices can have an upwards drift.
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multiunit-demand buyers whereas prior theoretical work had focussed on the sim-
pler setting of unit-demand buyers. As well as being of more practical relevance (see
the many examples above), multiunit-demand buyers can implement more sophis-
ticated bidding strategies. Therefore, it is not unreasonable that equilibria in the
multiunit-demand setting may possess more interesting properties than equilibria in
the unit-demand setting. Second, they study an auction with full information. The
restriction to full information is extremely useful here as it separates away informa-
tional aspects. Hence, it allows one to focus on the strategic properties caused purely
by the sequential sales of items and not by a lack of information.

1.1 Results and Overview of the Paper

The result of [12] prompts the question of whether or not the declining price anomaly
is guaranteed to hold in general, that is, in sequential auctions with more than two
buyers. We answer this question in the negative by exhibiting a sequential auction
with three buyers and eight items where prices initially rise and then fall. In order to
run our experiments that find this counter-example (to the conjecture that prices are
weakly decreasing for multi-buyer sequential auctions) we study in detail the form of
equilibria in sequential auctions. First, it is important to note that there is a fundamen-
tal distinction between sequential auctions with two buyers and sequential auctions
with three or more buyers. In the former sequential auction, each subgame reduces to
a standard auction with independent valuations. We explain this in Section 2.1, where
we present the two-buyer full-information model of [12]. In contrast, in a multi-buyer
sequential auction each subgame reduces to an auction with interdependent valua-
tions. This is explained in Section 2.2 after we present the extension of the model of
[12] to multi-buyer sequential auctions. Consequently to study multi-buyer sequen-
tial auctions we must study the equilibria of auctions with interdependent valuations.
A theory of such equilibria was recently developed by [24] via a correspondence
with an ascending price mechanism. In particular, as we discuss in Section 2.3, this
ascending price mechanism outputs a unique bid value, called the dropout bid βi ,
for each buyer i. For first-price auctions it is known [24] that these dropout bids
form a subgame perfect equilibrium and, moreover, the interval [0, βi] is the exact
set of bids that survives all processes consisting of the iterative deletion of strategies
that are weakly dominated. In contrast, we show in Section 2.3 that for second-price
auctions it may be the case that no bids survive the iterative deletion of weakly dom-
inated strategies; however, we prove that the interval [0, βi] is the exact set of bids
for any losing buyer that survives all processes consisting of the iterative deletion of
strategies that are weakly dominated by a lower bid.

In Section 3 we describe the counter-example. This counter-example, and all of
our theorems in Sections 3 and 4, apply to both the first-price and second-price
sequential auction settings. We emphasize that there is nothing unusual about our
example. The form of the valuation functions used for the buyers is standard, namely,
weakly decreasing marginal valuations. Furthermore, the non-monotonic price tra-
jectory does not arise because of the use of an artificial tie-breaking rule; the three
most natural tie-breaking rules, see Section 2.4, all induce the same non-monotonic
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price trajectory. Indeed, we present an even stronger result in Section 4: for any tie-
breaking rule, there is a sequential auction on which it induces a non-monotonic price
trajectory.

This lack of weakly decreasing prices provides an explanation for why multi-buyer
sequential auctions have been hard to analyze quantitatively. We provide a second
explanation in Section 4.3. There we present a three-buyer sequential auction that
does satisfy weakly decreasing prices but which has subgames where some agent
has a negative value from winning against one of the two other agents. Again, this
contrasts with the two-buyer case where every agent always has a non-negative value
from winning against the other agent in every subgame.

Finally in Section 5, we describe the results obtained via our large scale exper-
imentations. These results show that whilst the declining price anomaly is not
universal, exceptions are extremely rare. Specifically, from a randomly generated
dataset of over six million sequential auctions and a variety of tie-breaking rules
only a 0.000183 proportion of the instances produced non-monotonic price trajec-
tories. Consequently, these experiments are consistent with the practical examples
discussed in the introduction. Of course, it is perhaps unreasonable to assume that
subgame perfect equilibria arise in practice; we remark, though, that the use of simple
bidding algorithms by bidders may also lead to weakly decreasing prices in a multi-
buyer sequential auction. For example, [26] presents a method called the residual
monopsonist procedure inducing this property in restricted settings.

2 The Sequential AuctionModel

Here we present the full-information sequential auction model. There are T identical
items and n buyers. Exactly one item is sold in each time period over T time periods.
Buyer i has a value Vi(k) for winning exactly k items. Thus Vi(k) = ∑k

�=1 vi(�),
where vi(�) is the marginal value buyer i has for obtaining an �th item. This induces
an extensive form game. [12], for the two-buyer case, and [24], for the multiple-
buyer first-price case, show that this sequential game has a focal subgame perfect
equilibrium. In this section, we will show that an exact analogue of their results do not
hold for the second-price case with multiple buyers. However, the main purpose of
this section is to show that, in effect, the equilibrium of [24] is also a focal equilibrium
in the second-price setting, and their results can be extended to this setting with a
small technical modification.

To analyze this game it is informative to begin by considering the 2-buyer case,
as studied by [12], which we do in the following subsection. [24] show that in the
first-price setting, this extensive form game has a focal subga

2.1 The Two-Buyer Case

During the auction, the relevant history is the number of items each buyer has cur-
rently won. Thus we may compactly represent the extensive form (“tree”) of the
auction using a directed graph with a node (x1, x2) for any pair of non-negative inte-
gers that satisfies x1+x2 ≤ T . The node (x1, x2) induces a subgame with T −x1−x2
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items for sale and where each buyer i already possesses xi items. Note there is a
source node, (0, 0), corresponding to the whole game, and sink nodes (x1, x2), where
x1 + x2 = T . The values Buyer 1 and Buyer 2 have for a sink node (x1, x2) are
Π1(x1, x2) = V1(x1) and Π2(x1, x2) = V2(x2), respectively. We want to evaluate
the values (utilities) at the source node (0, 0). We can do this recursively working
from the sinks upwards. Take a node (x1, x2), where x1 + x2 = T − 1. This node
corresponds to the final round of the auction, where the last item is sold, given that
each buyer i has already won xi items. The node (x1, x2) will have directed arcs
to the sink nodes (x1 + 1, x2) and (x1, x2 + 1); these arcs correspond to Buyer 1
and Buyer 2 winning the final item, respectively. For the case of second-price auc-
tions, it is then a weakly dominant strategy for Buyer 1 to bid its marginal value
v1(x1 + 1) = V1(x1 + 1) − V1(x1); similarly for Buyer 2. Of course, this marginal
value is just v1(x1 + 1) = Π1(x1 + 1, x2) − Π1(x1, x2 + 1), the difference in value
between winning and losing the final item. If Buyer 1 is the highest bidder at (x1, x2),
that is, Π1(x1 + 1, x2) − Π1(x1, x2 + 1) ≥ Π2(x1, x2 + 1) − Π2(x1 + 1, x2), then
we have that

Π1(x1, x2) = Π1(x1 + 1, x2) − (
Π2(x1, x2 + 1) − Π2(x1 + 1, x2)

)

Π2(x1, x2) = Π2(x1 + 1, x2)

That is, Buyer 1’s value for the node (x1, x2), which is Π1(x1, x2), is its value for the
node (x1+1, x2) minus Buyer 2’s bid for the next item. Symmetric formulas apply if
Buyer 2 is the highest bidder at (x1, x2). Hence we may recursively define a value for
each buyer for each node. The iterative elimination of weakly dominated strategies
then leads to a subgame perfect equilibrium [5, 12].

Example Consider a two-buyer sequential auction with two items, where the
marginal valuations are {v1(1), v1(2)} = {10, 8} and {v2(1), v2(2)} = {6, 3}. This
game is illustrated in Fig. 1. The base case with the values of the sink nodes is shown
in Fig. 1a. The first row in each node refers to Buyer 1 and shows the number of items
won (in plain text) and the corresponding value (in bold); the second row refers to
Buyer 2. The outcome of the second-price sequential auction, solved recursively, is
then shown in Fig. 1b. Arcs are labelled by the bid value; here arcs for Buyer 1 point
left and arcs for Buyer 2 point right. Solid arcs represent winning bids and dotted
arcs are losing bids. The equilibrium path is shown in bold.

Fig. 1 Second-Price Sequential Auction
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Observe that the declining price anomaly is exhibited in this example. Specifically,
in this subgame perfect equilibrium, Buyer 2 wins the first item for a price 5 and
Buyer 1 wins the second item for a price 3. As stated, this example is not an excep-
tion. [12] showed that weakly decreasing prices are a property of 2-buyer sequential
auctions.

Theorem 2.1 [12] In a 2-buyer second-price sequential auction there is a unique
equilibrium that survives the iterative deletion of weakly dominated strategies.
Moreover, at this equilibrium prices are weakly declining.

We remark that the subgame perfect equilibrium that survives the iterative elimi-
nation of weakly dominated strategies is unique in terms of the values at the nodes.
Moreover, given a fixed tie-breaking rule, the subgame perfect equilibrium also has
a unique equilibrium path in each subgame.

In addition, Theorem 2.1 also applies to first-price sequential auctions. In this
case, to ensure the existence of an equilibrium, we make the standard assumption that
there is a fixed small bidding increment. That is, for any price p there is a unique
maximum price smaller than p. Given this, for the example above, the subgame per-
fect equilibrium using a first-price sequential auction is as shown in Fig. 2. Here we
use the notation p+ to denote a winning bid of value equal to p, and the notation p

to denote a losing bid equal to maximum value smaller than p.
Observe that the resultant prices on the equilibrium path are more easily apparent

in Fig. 2 than in Fig. 1. For this reason, all the figures we present in the rest of the
paper will be for first-price auctions; equivalent figures can can be drawn for the case
of second-price auctions.

So the decreasing price anomaly holds in two-buyer sequential auctions. The ques-
tion of whether or not it applies to sequential auctions with more than two buyers
remained open prior to this work. We resolve this question in the rest of this paper.
To do this, let’s first study equilibria in the full-information sequential auction model
when there are more than two buyers.

Fig. 2 First-Price Sequential Auction
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2.2 TheMulti-Buyer Case

The underlying model of [12] extends simply to sequential auctions with n ≥ 3 buy-
ers. There is a node (x1, x2, . . . , xn) for each set of non-negative integers satisfying∑n

i=1 xi ≤ T . There is a directed arc from (x1, x2, . . . , xn) to (x1, x2, . . . , xj−1, xj +
1, xj+1, . . . xn) for each 1 ≤ j ≤ n. Thus each non-sink node has n out-going arcs.
This is problematic: whilst in the final time period each buyer has a value for winning
and a value for losing, this is no longer the case recursively in earlier time periods.
Specifically, buyer i has value for winning, but n − 1 (different) values for losing
depending upon the identity of the buyer j �= i who actually wins. Thus rather than
each node corresponding to a standard auction, each node in the multi-buyer case
corresponds to an auction with interdependent valuations.

Formally, an auction with interdependent valuations is a single-item auction where
each buyer i has a value vi,i for winning the item and, for each buyer j �= i, buyer i

has value vi,j if buyer j wins the item. These auctions, also called auctions with exter-
nalities, were introduced by [11] and by [17]. Their motivations were applications
where losing participants were not indifferent to the identity of the winning buyer;
examples include firms seeking to purchase a patented innovation, take-over acqui-
sitions of a smaller company in an oligopolistic market, and sports teams competing
to sign a star athlete.

Therefore to understand multi-buyer sequential auctions we must first understand
equilibria in auctions with interdependent valuations. This is actually not a simple
task. Indeed such an understanding was only recently provided by [24].

2.3 Equilibria in Auctions with Interdependent Valuations

2.3.1 An Ascending Price Mechanism

We can explain the result of [24] via an ascending price auction. Imagine a two-
buyer ascending price auction where the valuations of the buyers are v1 > v2. The
requested price p starts at zero and continues to rise until the point where the second
buyer drops out. Of course, this happens when the price reaches v2, and so Buyer 1
wins for a payment p+ = v2. But this is exactly the outcome expected from a first-
price auction: Buyer 2 loses with bid of p and Buyer 1 wins with a bid of p+. To
generalize this to multi-buyer settings we can view this process as follows. At a price
p, buyer i remains in the auction as long as there is at least one buyer j still in the
auction who buyer i is willing to pay a price p to beat; that is, vi,i − p > vi,j .
The last buyer to drop out wins at the corresponding price. For example, in the two-
buyer example above, Buyer 2 drops out at price p = v2 as it would rather lose to
Buyer 1 than win above that price. Therefore, at price p+ there is no buyer still in
the auction that Buyer 1 wishes to beat (because there are no other buyers remaining
in the auction at all!). Thus Buyer 1 drops out at p+ and, being the last buyer to drop
out, wins at that price.

Observe that, even in the multi-buyer setting, this procedure produces a unique
dropout bid βi for each buyer i. To illustrate this, two auctions with interdependent
valuations are shown in Fig. 3. In these diagrams the label of an arc from buyer i to
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Fig. 3 DROP-OUT BID EXAMPLES. In these two examples the dropout bid vectors (β1, β2, β3, β4) are
(18, 31, 31+, 23) and (24, 24, 24, 24+), respectively

buyer j is wi,j = vi,i − vi,j . That is, buyer i is willing to pay up to wi,j to win if the
alternative is that buyer j wins the item. Now consider running our ascending price
procedure for these auctions. In Fig. 3a, Buyer 1 drops out when the price reaches
18. Since Buyer 1 is no longer active in the auction, Buyer 4 drops out when the
price reaches 23. At this point, Buyer 2 and Buyer 3 are left to compete for the item.
Buyer 3 wins when Buyer 2 drops out at price 31. Thus the drop-out bid of Buyer 3 is
31+. Observe that Buyer 2 loses despite having very high values for winning (against
Buyer 1 and Buyer 4).

The example of Fig. 3b with dropout bid vector (β1, β2, β3, β4) =
(24, 24, 24, 24+) is more subtle. Here Buyer 2 drops out at price 24. But Buyer 3
only wanted to beat Buyer 2 at this price so it then immediately drops out at the same
price. Now Buyer 1 only wanted to beat Buyer 2 and Buyer 3 at this price, so it then
immediately drops out at the same price. This leaves Buyer 4 the winner at price 24+.

2.3.2 Dropout Bids and Iterative Deletion of Weakly Dominated Strategies

As well as being solutions to the ascending price auction, the dropout bids have a
much stronger property that makes them the natural and robust prediction for auctions
with interdependent valuations. Specifically, [24] proved that, for each buyer i, the
interval [0, βi] is the set of strategies that survive any sequence consisting of the
iterative deletion of weakly dominated strategies. This is formalized as follows. Take
an n-buyer game with strategy sets S1, S2, . . . , Sn and utility functions ui : S1×S2×
· · · × Sn → R. Then {Sτ

i }i,τ is a valid sequence for the iterative deletion of weakly
dominated strategies if for each τ there is a buyer i such that (i)Sτ

j = Sτ−1
j for each

buyer j �= i and (ii)Sτ
i ⊂ Sτ−1

i where for each strategy si ∈ Sτ−1
i \ Sτ

i there is an
ŝi ∈ Sτ

i such that ui(ŝi , s−i ) ≥ ui(si , s−i ) for all s−i ∈ ∏
j :j �=i Sτ

j , and with strict
inequality for at least one s−i .

We say that a strategy si for buyer i survives the iterative deletion of weakly
dominated strategies if for any valid sequence {Sτ

i }i,τ we have si ∈ ⋂
τ Sτ

i .

Theorem 2.2 [24] Given a first-price auction with interdependent valuations, for
each buyer i, the set of bids that survive the iterative deletion of weakly dominated
strategies is exactly [0, βi].
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Fig. 4 A second-price auction with interdependent valuations where no strategies survive the iterative
deletion of weakly dominated strategies

An exact analogue of Theorem 2.2 does not hold for second-price auctions with
interdependent valuations. Instead, it may be the case that no strategies survive the
iterative deletion of weakly dominated strategies.

Theorem 2.3 There are second-price auctions with interdependent valuations where
no strategies survive the iterative deletion of weakly dominated strategies.

Proof Consider the 3-buyer auction with interdependent valuations shown in Fig. 4.
Let’s now examine what happens when we use the two different orderings

illustrated in Fig. 5 to delete weakly dominated strategies.
Consider first the iterative process in the first table of Fig. 5. Observe that Buyer 3

is willing to pay 6 to beat Buyer 1 and 5 to beat Buyer 2. It follows that any bid above
6 is weakly dominated by a bid of 6. Moreover, as this is a second-price auction, any
bid below 5 is weakly dominated by a bid of 5 (we emphasize that this latter fact does
not hold in the case of first-price auctions). Now, rather than deleting all these bids
immediately, imagine that Buyer 3 deletes any bid over 6 and any bid between 1 and
2. Therefore S1

3 = [0, 6] \ [1, 2]. At this stage the undeleted strategies for Buyer 1
and Buyer 2 remain S1

1 = S1
2 = [0, ∞).

Fig. 5 Two processes that together eliminate every strategy for Buyer 1
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Fig. 6 Two processes that together eliminate every strategy for Buyer 2

Next observe that Buyer 1 is willing to pay at most 1 to beat Buyer 2 but up to 2 to
beat Buyer 3. Because this is a second-price auction, it immediately follows that any
bid below one or above two is weakly dominated. Now let’s compare the outcomes
for Buyer 1 between bidding 1 and bidding x ∈ (1, 2]. If Buyer 2 and Buyer 3 are
both bidding below one then Buyer 1 wins with a bid of 1 or a bid of x. If either
Buyer 2 or Buyer 3 is bidding greater than x then Buyer 1 loses with a bid of 1 or a
bid of x. So suppose the highest bid from Buyer 2 and Buyer 3 is between 1 and x. If
this highest bid is from Buyer 2 then Buyer 1 would prefer to lose and so bidding 1
is preferable to bidding x. On the other hand, if this highest bid is from Buyer 3 then
Buyer 1 would prefer to win and so bidding x is preferable to bidding 1. But the latter
case cannot happen as the strategy space of Buyer 3 is currently S1

3 = [0, 6] \ [1, 2].
It follows that bidding 1 weakly dominates bidding x. Hence we can set S2

1 = {1}.
Next consider the iterative process in the second part of Fig. 5. This time let’s begin

by deleting strategies of Buyer 2 that are weakly dominated. Observe that Buyer 2 is
willing to pay 4 to beat Buyer 1 and 3 to beat Buyer 3. Let’s imagine that Buyer 2 now
deletes any bid over 4 and any bid between 1 and 2. Therefore S1

2 = [0, 4] \ [1, 2]. At
this stage the undeleted strategies for Buyer 1 and Buyer 3 remain S1

1 = S1
3 = [0, ∞).

In the next step consider Buyer 1. Again, bidding less than one or above two
is weakly dominated. This time let’s compare the outcomes for Buyer 1 between
bidding 2 and bidding x ∈ [1, 2). If Buyer 2 and Buyer 3 are both bidding below x

then Buyer 1 wins with a bid of 2 or a bid of x. If either Buyer 2 or Buyer 3 is bidding
greater than 2 then Buyer 1 loses with a bid of 2 or a bid of x. So suppose the highest
bid from Buyer 2 and Buyer 3 is between x and 2. If this highest bid is from Buyer 2
then Buyer 1 would prefer to lose and so bidding x is preferable to bidding 2. On
the other hand, if this highest bid is from Buyer 3 then Buyer 1 would prefer to win
and so bidding 2 is preferable to bidding x. But the former case cannot happen as the
strategy space of Buyer 2 is currently S1

2 = [0, 4] \ [1, 2]. If follows that bidding 2
weakly dominates bidding x. Hence we can set S2

1 = {2}.
But {1}∩{2} = ∅. Therefore, no strategy for Buyer 1 survives the iterative deletion

of weakly-dominated strategies. That is, for each bid value b there is a sequence of
iterative deletions of weakly-dominated strategies that deletes the bid b of Buyer 1.
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We remark that, for this example, similar arguments show that no bid for Buyer 2
survives the iterative deletion of weakly-dominated strategies. In particular, the two
processes shown in Fig. 6 lead to non-intersecting, undeleted, strategy sets for
Buyer 2.

Consideration of the above example shows that the problem occurs when a strategy
is deleted because it is weakly dominated by a higher value bid. Observe that this can
never happen for a potentially winning bid in a first-price auction. Thus Theorem 2.2
still holds in first-price auctions when we restrict attention to sequences consisting of
the iterative deletion of strategies that are weakly dominated by a lower bid. Indeed,
we can prove the corresponding theorem also holds for second-price auctions.

Theorem 2.4 Given a second-price auction with interdependent valuations, for each
losing buyer i, the set of bids that survive the iterative deletion of strategies that are
weakly dominated by a lower bid is exactly [0, βi].

Proof First we claim that for any losing buyer i and any price p > βi there is a
sequence of iterative deletions of strategies that are weakly dominated by a lower bid
that leads to the deletion of bid p from Sτ

i . Without loss of generality, we may order
the buyers such that β1 ≤ β2 ≤ · · · ≤ βn; in the case of a tie the buyers are placed
in the order they were deleted by the tie-breaking rule. Initially S0

i = [0, ∞), for
each buyer i. We now define a valid sequence such that Si

i = [0, βi]. We proceed by
induction on the label of the buyers. For the base case observe that for Buyer 1 we
know β1 = maxj :j �=i (vi,i − vi,j ) is the highest price it wants to pay to beat anyone
else. Suppose Buyer 1 bids p > β1. Take any set of bids b−1 ∈ ×j :j≥2S

0
j . We have

three cases:

(i) Both bids p and β1 are winning bids against b−1. Then, as this is a second-price
auction, Buyer 1 is indifferent between the two bids.

(ii) Both bids p and β1 are losing bids against b−1. Then Buyer 1 is indifferent
between the two bids.

(iii) Bid p is a winning bid but β1 is a losing bid against b−1. Then since the
winning price is at least β1, Buyer 1 strictly prefers to lose rather than win.
Moreover, since S0

j = [0, ∞), there is a set of bids b−1 by the other buyers
such that Buyer 1 strictly prefers to lose rather than win.

Thus the bid p is weakly dominated by the lower bid β1. Since this applies to
any p > β1, in Step 1 we may delete every bid for Buyer 1 above β1. Therefore
S1
1 = [0, β1] and S1

j = [0, ∞] for each buyer j ≥ 2.

For the induction hypothesis assume Si−1
j = [0, βj ], for all j < i and Si−1

j =
[0, ∞), for all j ≥ i. Now take a losing buyer i and any set of bids b−i ∈ ×j :j �=iS

i−1
j .

Again, we have three cases:

(i) Both bids p and βi are winning bids against b−i . Then, as this is a second-price
auction, buyer i is indifferent between the two bids.
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(ii) Both bids p and β1 are losing bids against b−i . Then buyer i is indifferent
between the two bids.

(iii) Bid p is a winning bid but βi is a losing bid against b−i . Then since βi is a
losing bid under the tie-breaking rule, it must be the case that the winning bid
is from a buyer j where j > i. But, by definition of βi , there is no buyer j ,
with j > i, that buyer i wishes to beat at price βi .

So buyer i prefers the bid βi to the bid p. Moreover, since any buyer j : j > i has
Si−1

j = [0, ∞), this preference is strict for some feasible choice of bids for the other
buyers. Thus, for buyer i, the bid p is weakly dominated by the lower bid βi , and this
applies to every p > βi . Ergo, in Step i we may delete every bid for buyer i above
βi . Therefore Si

j = [0, βi], for all j < i + 1 and Si−1
j = [0, ∞), for all j ≥ i + 1.

The claim then follows by induction. So, for any losing buyer i we have that no bid
greater than βi survives the iterative deletion of strategies that are weakly dominated
by a lower bid.

Observe that the above arguments also apply for the winning buyer, that is,
buyer n. Except, as there are no higher indexed buyers, it is not the case that βn

strictly dominates any bid p > βn. Indeed, buyer n is indifferent between all bids
in the range [βn, γn], where γn is the maximum value the buyer has for beating any
buyer j with dropout bid βj = βn. Observe, γn does exist and is at least βn by defi-
nition of the ascending price mechanism. Thus, for the winning bidder no bid greater
than γi survives the iterative deletion of strategies that are weakly dominated by a
lower bid.

Second, we claim for any buyer i and any price q < βi there is no sequence of
iterative deletions of strategies that are weakly dominated by a lower bid that leads
to the deletion of bid q from the feasible strategy space of buyer i. If not, consider
the first time τ that some buyer i has a value q ∈ [0, βi] deleted from Sτ

i . We may
assume that q is deleted because it is was weakly dominated by a lower bid p < q.
Now, by assumption, [0, βj ] ⊆ Sτ−1

j , for each buyer j . Furthermore, by definition,
there is some buyer k, with k > i that buyer i wishes to beat at any price below βi .
In particular, Buyer i wishes to beat Buyer k at price p. But since k > i we have
βk ≥ βi . Recall that [0, βk] ⊆ Sτ−1

k . It immediately follows that there is a set of
feasible bids bk ∈ (p, q) and bj = 0, for all j /∈ {i, k} such that Buyer i strictly
prefers to win against these bids. Specifically, the bid q is not weakly dominated by
the bid p, a contradiction.

It follows that the dropout bids form the focal subgame perfect equilibrium for
both first-price and second-price auctions with interdependent valuations.

We are now almost ready to be able to find equilibria in the sequential auction
experiments we will conduct. This, in turn, will allow us to present a sequential
auction with non-monotonic prices. Before doing so, one final factor remains to be
discussed regarding the transition from equilibria in auctions with interdependent
valuations to equilibria in sequential auctions.
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2.4 Equilibria in Sequential Auctions

2.4.1 Tie-Breaking Rules

As stated, the dropout bid of each buyer is uniquely defined. However, our description
of the ascending auction may leave some flexibility in the choice of winner. Specifi-
cally, it may be the case that simultaneously more than one buyer wishes to drop out
of the auction. If this happens at the end of the ascending price procedure then any of
these buyers could be selected as the winner. An example of this is shown in Fig. 7.

This observation implies that to fully define the ascending auction procedure we
must incorporate a tie-breaking rule to order the buyers when more than one wish
to drop out simultaneously. In a one-shot auction with interdependent valuations the
tie-breaking rule only affects the choice of winner, but otherwise has no structural
significance. However, in a sequential auction the choice of tie-breaking rule may
have much more significant consequences. Specifically, because each node in the
game tree corresponds to an auction with interdependent valuations, the choice of
winner at one node may affect the valuations at nodes higher in the tree. In particular,
the equilibrium path may vary with different tie-breaking rules, leading to different
prices, winners, and utilities.

As we will show in Section 4.1 there are a massive number of tie-breaking rules,
even in small sequential auctions. We emphasize, however, that our main result
holds regardless of the tie-breaking rule. That is, for any tie-breaking rule there is
a sequential auction on which it induces a non-monotonic price trajectory. This we
will also show in Section 4 after explaining mathematically how to classify every
tie-breaking rule in terms of labelled, directed acyclic graphs. First, though, we will
show that non-monotonic pricing occurs on the equilibrium path for perhaps the three
most natural choices of tie-breaking rule, namely preferential-ordering,
first-in-first-out and last-in-first-out. Interestingly these rules
correspond to the fundamental data structures of priority queues, queues, and stacks
used in computer science.

Fig. 7 TIE-BREAKING. An example requiring tie-breaking to decide the winner. The drop-out bid vector
is (15, 15, 15) but there are two possible winners: (15, 15+, 15) or (15, 15, 15+)

558 Theory of Computing Systems  (2022) 66:546–580



2.4.2 Tie-Breaking Rules (and Data Structures!)

Preferential Ordering (Priority Queue) In preferential-ordering each buyer
is given a distinct rank. In the case of a tie the buyer with the worst rank is elimi-
nated. Without loss of generality, we may assume that the ranks corresponding to a
lexicographic ordering of the buyers. That is, the rank of a buyer is its index label and
given a tie amongst all the buyers that wish to dropout of the auction we remove the
buyer with the highest index. The preferential ordering tie-breaking rule corresponds
to the data structure known as a priority queue.

First-In-First-Out (Queue) The first-in-first-out tie-breaking rule corre-
sponds to the data structure known as a queue. The queue consists of those buyers in
the auction that wish to dropout. Amongst these, the buyer at the front of the queue
is removed. If multiple buyers request to be added to the queue simultaneously, they
will be added lexicographically. Note though that this is different from preferential
ordering as the entire queue will not, in general, be ordered lexicographically. For
example, when at a fixed price p we remove the buyer i at the front of the queue
this may cause new buyers to wish to dropout at price p (i.e. those buyers who only
wanted to beat buyer i). These new buyers will be placed behind the other buyers
already in the queue.

Last-In-First-Out (Stack) The last-in-first-out tie-breaking rule corresponds
to the data structure known as a stack. Again the stack consists of those buyers in
the auction that wish to dropout. Amongst these, the buyer at the top of the stack
(i.e. the back of the queue) is removed. If multiple buyers request to be added to
the stack simultaneously, they will be added lexicographically. At first glance, this
last-in-first-out rule appears more unusual than the previous two, but it still
has a natural interpretation in terms of an auction. Namely, it corresponds to settings
where the buyer whose situation has changed most recently reacts the quickest.

In order to understand these tie-breaking rules it is useful to see how they apply on
an example. In Fig. 8 the dropout vector is (β1, β2, β3, β4, β5) = (40, 40, 40, 40, 40),
but the three tie-breaking rules will select three different winners.

On running the ascending price procedure, both Buyer 3 and Buyer 4 wish to
drop out when the price reaches 40. In preferential-ordering, the set of
agents eligible for dropping out is then {3, 4} and we remove the highest index buyer,
namely Buyer 4. With the removal of Buyer 4, neither Buyer 1 nor Buyer 5 have
an incentive to continue bidding so they both decide to dropout. Thus the set of
agents eligible for dropping out is now {1, 3, 5} and preferential-ordering
removes Buyer 5. Observe, with the removal of Buyer 5, that Buyer 2 no longer
has an active participant it wishes to beat so the set of agents eligible for dropping
out is updated to {1, 2, 3}. The preferential-ordering rule now removes the
buyers in the order Buyer 3, then Buyer 2 and lastly Buyer 1. Thus Buyer 1 wins
under the preferential-ordering rule.

Now consider first-in-first-out. To allow for a consistent comparison
between the three methods, we assume that when multiple buyers are simultaneously
added to the queue they are added in decreasing lexicographical order. Thus our
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Fig. 8 An Example to Illustrate the Three Tie-Breaking Rules

initial queue is 4 : 3 and first-in-first-out removes Buyer 4 from the front
of the queue. With the removal of Buyer 4, neither Buyer 1 nor Buyer 5 have an
incentive to continue bidding so they are added to the back of the queue. Thus the
queue is now 3 : 5 : 1 and first-in-first-out removes Buyer 3 from the front
of the queue. It then removes Buyer 5 from the front of the queue. With the removal of
Buyer 5, we again have that Buyer 2 now wishes to dropout. Hence the queue is 1 : 2
and first-in-first-out then removes Buyer 1 from the front of the queue
and lastly removes Buyer 2. Thus Buyer 2 wins under the first-in-first-out
rule.

Finally, consider the last-in-first-out rule. Again, to allow for a consis-
tent comparison we assume that when multiple buyers are simultaneously added to
the stack they are added in increasing lexicographical order. Thus our initial stack is
4
3
and last-in-first-out removes Buyer 4 from the top of the stack. Again,

Buyer 1 and Buyer 5 both now wish to drop out so our stack becomes
5
1
3
. Therefore

Buyer 5 is next removed from the the top of the stack. At this point, Buyer 2 wishes

to dropout so the stack becomes
2
1
3
. The last-in-first-out rule now removes

the buyers in the order Buyer 2, then Buyer 1 and lastly Buyer 3. Thus Buyer 3 wins
under the last-in-first-out rule.

We have now developed all the tools required to implement our sequential auction
experiments. We describe these experiments and their results in Section 5. Before
doing so, we present in Section 3 one sequential auction obtained via these exper-
iments and verify that it leads to a non-monotonic price trajectory with each of
the three tie-breaking rules discussed above. We then explain in Section 4 how to
generalize this conclusion to apply to every tie-breaking rule.
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3 An Auction with Non-Monotonic Prices

Here we prove that the decreasing price anomaly is not guaranteed for sequential
auctions with more than two buyers. Specifically, in Section 4 we prove the following
result:

Theorem 4.1 For any tie-breaking rule τ , there is a sequential auction on which
it produces non-monotonic prices.

This result is rather surprising, since the result of [12] implies that with two buyers,
prices always decrease at equilibrium even when the valuation functions do not have
decreasing marginals. In stark contrast, with three or more buyers, the prices can
increase along the equilibrium path despite the assumption of decreasing marginal
valuations.

Before we prove this general result, however, in the rest of this section, we show
that for all three of the tie-breaking rules discussed (namely, preferential-
ordering, first-in-first-out and last-in-first-out) there is a
sequential auction with non-monotonic prices. Specifically, we exhibit a sequential
auction with three buyers and eight items that exhibits non-monotonic prices.

Theorem 3.1 There is a sequential auction with a non-monotonic price trajectory
for the preferential-ordering, first-in-first-out and last-in-
first-out rules.

Proof Our counter-example to the conjecture is a sequential auction with three buy-
ers and eight identical items for sale. We present the first-price version where at
equilibrium the buyers bid their dropout values in each time period; as discussed, the
same example extends to second-price auctions.

The valuations of the three buyers are defined as follows. Buyer 1 has marginal
valuations {55, 55, 55, 55, 30, 20, 0, 0}, Buyer 2 has marginal valuations {32, 20, 0,
0, 0, 0, 0, 0}, and Buyer 3 has marginal valuations {44, 44, 44, 44, 0, 0, 0, 0}.

Let’s now compute the extensive forms of the auction under the three tie-breaking
rules. We begin with the preferential-ordering rule. To compute its exten-
sive form, observe that Buyer 1 is guaranteed to win at least two items in the auction
because Buyer 2 and Buyer 3 together have positive value for six items. Therefore,
the feasible set of sink nodes in the extensive form representation are shown in Fig. 9.

Fig. 9 Sink Nodes of the Extensive Form Game
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Fig. 10 Solving a Subgame above the Sinks

Given the valuations at the sink nodes we can work our way upwards recursively
calculating the values at the other nodes in the extensive form representation. For
example, consider the node (x1, x2, x3) = (4, 1, 2). This node has three children,
namely (5, 1, 2), (4, 2, 2) and (4, 1, 3); see Fig. 10a. These induce a three-buyer auc-
tion as shown in Fig. 10b. This can be solved using the ascending price procedure
to find the dropout bids for each buyer. Thus we obtain that the value for the node
(x1, x2, x3) = (4, 1, 2) is as shown in Fig. 10c. Of course this node is particularly
simple as, for the final round of the sequential auction, the corresponding auction
with interdependent valuations is just a standard auction. That is, when the final item
is sold, for any buyer i the value vi,j is independent of the buyer j �= i.

Nodes higher up the game tree correspond to more complex auctions with interde-
pendent valuations. For example, the case of the source node (x1, x2, x3) = (0, 0, 0)
is shown in Fig. 11. In this case, on applying the ascending price procedure, Buyer 1
is the first to dropout at price 15. At this point, both Buyer 2 and Buyer 3 no longer
have a competitor that they wish to beat at this price, so they both want to dropout.
With the preferential-ordering tie-breaking rule, Buyer 2 wins the item.
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Fig. 11 Solving the Subgame at the Root

Using similar arguments at each node verifies the concise extensive form represen-
tation under the preferential-ordering tie-breaking rule shown in Fig. 12.
In this figure, the white nodes represent subgames where the sequential auction still
has three active buyers; the pink nodes represent subgames with at most two active
buyers; the yellow nodes are the sink nodes. Again, the equilibrium path with non-
monotonic prices is shown in bold. Now consider this equilibrium path. Observe that
Buyer 2 wins the first two items, Buyer 3 wins the next four items and Buyer 1 wins
the final two items. The resultant price trajectory is {15, 17, 0, 0, 0, 0, 0, 0}. That is,
the price rises and then falls to zero – a non-monotonic price trajectory.

Exactly the same example works with the other two tie-breaking rules. The
extensive form representation with the first-in-first-out rule is shown
in Fig. 13; the extensive form representation with the last-in-first-out rule
is shown in Fig. 14. Notice the node values under preferential-ordering and

563Theory of Computing Systems  (2022) 66:546–580



first-in-first-out are exactly the same. This is despite the fact that these
two rules do produce different winners at some nodes, for example the node (3, 0, 2).
In contrast, the last-in-first-out rule gives an extensive form where some

Fig. 12 Non-Monotonic Prices with the preferential-ordering Rule
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nodes have different valuations than those produced by the other two rules. For
example, for the node (2, 0, 0) and its subgame the equilibrium paths and their prices
differ in Figs. 13 and 14. However, for all three rules the equilibrium path and price

Fig. 13 Non-Monotonic Prices with the first-in-first-out Rule
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Fig. 14 Non-Monotonic Prices with the last-in-first-out Rule

trajectory for the whole game is exactly the same. We remark that these observations
will play a role when we prove that, for any tie-breaking rule, there is a sequential
auction with non-monotonic prices.
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Fig. 15 The Overbidding Graph G({1, 2, 3, 4, 5}, 40)

Again, we emphasize that there is nothing inherently perverse about this exam-
ple. The form of the valuation functions, namely decreasing marginal valuations, is
standard. As explained, the equilibrium concept studied is the appropriate one for
sequential auctions. Finally, the non-monotonic price trajectory is not the artifact
of an aberrant tie-breaking rule; we will now prove that non-monotonic prices are
exhibited under any tie-breaking rule.

4 Non-Monotonic Prices under General Tie-Breaking Rules

Next we prove that for any tie-breaking rule there is a sequential auction on which it
produces a non-monotonic price trajectory. To do this, we must first formally define
the set of all tie-breaking rules.

4.1 Classifying the set of Tie-Breaking Rules

Our definition of the set of tie-breaking rules will utilize the concept of an over-
bidding graph, introduced by [24]. For any price p and any set of bidders S, the
overbidding graph G(S, p) contains a labelled vertex for each buyer in S and an arc
(i, j) if and only if vi,i − p > vi,j . For example, recall the auction with interdepen-
dent valuations seen in Fig 8. This is reproduced in Fig. 15 along with its overbidding
graph G({1, 2, 3, 4, 5}, 40).

But what does the overbidding graph have to do with tie-breaking rules? First,
recall that the drop-out bid βi is unique for any buyer i, regardless of the tie-breaking
rule. Consequently, whilst the tie-breaking rule will also be used to order buyers
that are eliminated at prices below the final price p∗, such choices are irrelevant
with regards to the final winner. Thus, the only relevant factor is how a decision
rule selects a winner from amongst those buyers S∗ whose drop-out bids are p∗.
Second, recall that at the final price p∗ the remaining buyers are eliminated one-by-
one until there is a single winner. However, a buyer cannot be eliminated if there
remains another buyer still in the auction that it wishes to beat at price p∗. That
is, buyer i must be eliminated after buyer j if there is an arc (i, j) in the overbid-
ding graph. Thus, the order of eliminations given by the tie-breaking rule must be
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consistent with the overbidding graph. In particular, the winner can only be selected
from amongst the source vertices2 in the overbidding graph G(S∗, p∗). For exam-
ple, in Fig. 15 the source vertices are {1, 2, 3}. Note that this explains why the
tie-breaking rules preferential-ordering, first-in-first-out and
last-in-first-out chose Buyer 1, Buyer 2 and Buyer 3 as winners but none of
them selected Buyer 4 or Buyer 5. Observe that the overbidding graph G(S∗, p∗) is
acyclic; if it contained a directed cycle then the price in the ascending auction would
be forced to rise further. Because every directed acyclic graph contains at least one
source vertex, any tie-breaking rule does have at least one choice for winner.

Thus a tie-breaking rule is simply a function τ : H → σ(H). Here the domain
of the function is the set of labelled, directed acyclic graphs and σ(H) is the set
of source nodes in H . Consequently, two tie-breaking rules are equivalent if they
correspond to the same function τ . We are now ready to present our main result.

4.2 Non-Monotonic Prices for Any Tie-Breaking Rule

Theorem 4.1 For any tie-breaking rule, there is a sequential auction with non-
monotonic prices.

Proof We consider exactly the same example as in Theorem 3.1. That is,
we have three buyers and eight items where Buyer 1 has marginal valuations
{55, 55, 55, 55, 30, 20, 0, 0}, Buyer 2 has marginal valuations {32, 20, 0, 0, 0, 0,
0, 0}, and Buyer 3 has marginal valuations {44, 44, 44, 44, 0, 0, 0, 0}.

First let’s calculate howmany tie-breaking rules there are for this auction. To count
this we must consider all directed acyclic graphs with labels in {1, 2, 3}. Note that we
must have at least two buyers with drop-out values equal to the final price p∗ other-
wise the auction would have terminated earlier. Thus it suffices to consider directed
acyclic graphs with either two or three vertices. There are 8 such topologies that pro-
duce 34 labelled directed acyclic graphs and 12,288 tie-breaking rules! This is all
illustrated in Table 1.

Luckily we do not need to examine all these tie-breaking rules separately. It turns
out that the set of tie-breaking rules can be partitioned into exactly ten classes.
Specifically, any tie-breaking rule produces one of just ten possible (in terms of
distinct node valuations) extensive forms for this sequential auction. Two of these
we have seen before. The first is the extensive form shown in Fig. 12 (and also
shown in Fig. 13), that is produced by both preferential-ordering and
first-in-first-out. The second is the extensive form shown in Fig. 14
produced by last-in-first-out.

Let’s explain why there are only eight other feasible extensive forms. For any tie-
breaking rule, as we work up from the sink nodes there are many nodes where the
tie-breaking rule is required. Given this fact, why doesn’t the total number of dis-
tinct extensive forms blow-up multiplicatively? As previously alluded to, when we
apply a tie-breaking rule there are two possibilities that arise. In the first possibility,

2A source is a vertex v with in-degree zero; that is, there no arcs pointing into v.
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Table 1 Labelled Directed Acyclic Graphs

Directed Acylic Graph # Labelled Graphs # Sources

3 2

6 1

1 3

6 2

6 1

3 1

3 2

6 1

Total # Labelled DAGs 34

Total # Tie-Breaking Rules 121 · 212 · 31 = 12, 288

the node valuations are the same regardless of which buyer is selected by the rule.
Indeed this is why preferential-ordering and first-in-first-out
can produce the same extensive form. For example, consider the node (3, 0, 2)
where Buyer 1 wins with preferential-ordering but Buyer 3 wins with
first-in-first-out; in either case the node valuations are identical, namely
(188, 0, 112) as shown in Figs. 12 and 13. For our purpose, such nodes are of no
importance.
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Fig. 16 The Four Critical Overbidding Graphs

In the second possibility, the node valuations do vary depending upon which buyer
is selected by the tie-breaking rule. It turns out, however, that of the 34 labelled
directed acyclic graphs only 4 of these overbidding graphs affect the extensive form
node valuations. These four critical overbidding graphs, which we call A, B, C and
D, are shown in Fig. 16.

So why are these these the only four overbidding graphs that matter? The reader
may verify that, working upwards from the sink nodes, the first such nodes where the
choice of tie-breaking rule matters occur at depth 4. Specifically, at the three nodes
(4, 0, 0), (1, 0, 3) and (0, 1, 3). Now the nodes (1, 0, 3) and (0, 1, 3) both correspond
to the overbidding graph A whilst the node (4, 0, 0) corresponds to the overbidding
graph B. For the overbidding graph A the tie-breaking rule must select either the sink
vertex 2 or the sink vertex 3 to win. Moreover, by definition, it must make the same
choice at both (1, 0, 3) and (0, 1, 3). Furthermore, regardless of this choice, as we
work up the extensive form the nodes (1, 0, 2), (0, 1, 2), (0, 0, 3), (0, 1, 1), (0, 0, 2),
(0, 1, 0), (0, 0, 1) and (0, 0, 0) also all have the overbidding graph A and, thus, must
also have the same winner.

The choice of winner at (4, 0, 0) for overbidding graph B is also between Buyer 2
and Buyer 3, but in this case, the effect is more subtle. If Buyer 2 wins then the
overbidding graph D is induced at node (3, 0, 0), whereas if Buyer 3 wins then
the overbidding graph C is induced at (3, 0, 0). In the former case, the overbid-
ding graph D arises at node (2, 0, 0) regardless the choice of winner at (3, 0, 0).
In the latter case, there are three possible winners in the overbidding graph C at
(3, 0, 0). If Buyer 1 or Buyer 3 win these produce the same node valuations and
give the overbidding graph C at (2, 0, 0); if Buyer 2 wins this gives the over-
bidding graph D at (2, 0, 0). A decision tree showing all the possible choices is
shown in Fig. 17. The reader may verify that these are the only decisions that affect
the valuations at the nodes. Thus there are ten possible extensive forms, where
Yes/No details whether or not a monotonic price trajectory is produced. Where the
tie-breaking rules preferential-ordering, first-in-first-out, and
last-in-first-out fit in this decision tree are highlighted in the figure.

Several observations are in order. First, not all of the classes of tie-breaking rule
give non-monotonic price trajectories. An example of a tie-breaking rule with mono-
tonic prices is shown in Fig. 18. In fact, the choices made on the overbidding graphs
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Fig. 17 Monotonic Prices: Yes or No? A Decision Tree Partitioning the Tie-Breaking Rules into Ten
Classes

B, C and D only affect valuations on nodes off the equilibrium path. The equilibrium
path itself is determined uniquely by the choice made for the overbidding graph A. If
the winner there is Buyer 2 then the prices are non-monotonic; if the winner there is
Buyer 3 then the prices are monotonic.

We are now ready to complete the proof of the theorem. As we have just seen, any
tie-breaking rule can be classified into one of ten classes depending upon its choices
on this sequential auction. Five of the classes lead to non-monotonic prices on this
instance. For the other five classes of tie-breaking rule we need to construct different
examples on which they induces non-monotonic prices. But this is easy to do! Take
exactly the same example but with the labels of Buyer 2 and Buyer 3 interchanged.
The equilibrium paths for this sequential auction using any rule in the other five
classes will then have non-monotonic price trajectories.

4.3 Negative Utilities and Overbidding

We now discuss a couple of interesting observations that arise from this spe-
cific sequential auction. First we recall another interesting property of two-buyer
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Fig. 18 A Tie-Breaking Rule with Monotonic Prices

sequential auctions: in each round of the auction each buyer has a non-negative value
for winning the item over the other agent [12]. Interestingly, this property also fails
to hold for multi-buyer sequential auctions!
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Theorem 4.2 There are multi-buyer sequential auctions with weakly decreasing
marginal valuations that have subgames where one agent has a negative value for
winning against one other agent.

Proof Consider again the sequential auction shown in Fig. 18. Focus upon the auc-
tions with interdependent valuations corresponding to the subgames rooted at the
nodes (0, 1, 0), (0, 1, 1) and (0, 1, 2). In all three cases, Buyer 3 has a negative value
from winning over Buyer 2. For example, at node (0, 1, 0) Buyer 3 has a utility of
131 for winning but a utility of 176 if Buyer 2 wins. (Note that Buyer 3 does have
a positive value for defeating Buyer 1, specifically 131 − 48 = 83.) Of course, this
also implies there are sequential auctions with weakly decreasing marginal valuation
functions where one agent has a negative value for winning the first item over one
other agent.

Second, observe in Fig. 12 (see also Fig. 11) that in the first round Buyer 3 has a
value of 176−66 = 110 for winning over Buyer 1. This far exceeds its marginal value
of 44 for obtaining one item. A similar property can be seen in Figs. 13 and 14. Such
“overbidding” also arises in two-buyer sequential auctions. The reader may wonder,
however, whether this type of “overbidding” is responsible for the generation of non-
monotonic price trajectories in multi-buyer auctions. This is not the case. To verify
this we repeated all six million experiments described in Section 5 with the ascending
price mechanism modified to exclude the possibility of a buyer bidding higher than
their marginal value for their next unit of the good. The proportion of instances with
non-monotonic price trajectories was similar (roughly 10% less). Moreover, there
are instances where such “overbidding” does not arise but where the prices are non-
monotonic.

5 Experiments

Our experiments were based on a dataset of over six million multi-buyer sequen-
tial auctions with non-increasing valuation functions randomly generated from
different natural discrete probability distributions. Our goal was to observe the
proportion of non-monotonic price trajectories in these sequential auctions and to
see how this varied with (i) the number of buyers, (ii) the number of items, (iii)
the distribution of valuation functions, and (iv) the tie-breaking rule. To do this,
for each auction, we computed the subgame perfect equilibrium corresponding to
the dropout bids and evaluated the prices along the equilibrium path to test for
non-monotonicity.

We repeated this test for each of the three tie breaking rules described in
Section 2.4.1, namely preferential-ordering, first-in-first-out
and last-in-first-out. The results from our 6,240,000 randomly generated
sequential auctions are shown in Fig. 19.
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Fig. 19 Bar Charts showing the Frequency of Non-Monotonic Price Trajectories

5.1 Dataset Generation

We now describe the methods used to generate our auction dataset. Our generator was
implemented in C++11, using the GNU Compiler Collection (version 5.1.0) and the
standard random number library. The random number library provides classes that
generate pseudo-random numbers. These classes include both uniform random bit
generators (URBGs), which generate integer sequences with a uniform distribution,
and random number distributions, which convert the output of a URBG into various
statistical distributions (such as uniform, binomial or Poisson distributions). In our
experiments, we used the MT19937-64 implementation of the widely-used Mersenne
Twister URBG [20] along with the standard uniform int distribution,
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binomial distribution and poisson distribution classes to generate
the valuation functions in the dataset. We restricted our attention to integral non-
increasing marginal valuations and bounded the maximum marginal value of a single
item by 100. The purpose of this choice of constraints was to allow for a wide variety
of auction instances whilst still allowing for a reasonable chance for ties to arise in
the ascending auction mechanism, thus enabling us to observe any potential effects
of varying the tie-breaking rule.

Our dataset contains auctions with n = 3, 4 and 5 different buyers. For the 3-buyer
case, we varied the number T of items from T = 2 to T = 16. For each auction size,
we generated a total of 240,000 instances. Specifically, let Vi be the valuation func-
tion of buyer i, that is, Vi(0) = 0 and Vi assigns a non-negative value for every integer
�, 1 ≤ � ≤ T , corresponding to buyer i’s value for any set of � items. Let vi(�) be the
marginal value of buyer i for winning an �th item, that is, vi(�) = Vi(�) − Vi(� − 1).
We used the three aforementioned distributions to each generate 80,000 sets of val-
uation functions. To generate the values vi(�), for each buyer i we first uniformly
selected a maximummarginal value wi in the interval [1, 100]. For half the instances,
we generated wi independently for every player, and for the other half, we made wi

equal for all players. Subsequently, for each buyer i, we chose the number of nonzero
valuations mi uniformly in [1, T ]. For the first distribution, we then independently
generated and sorted mi values uniformly in [1, wi], and padded this sequence with
T − mi zeros, to generate a decreasing integer sequence: the valuation function for
buyer i. For the second distribution, for each buyer i we generated mi values from a
binomial distribution with parameters n = wi and p = 0.5, and sorted and padded
this sequence with T − mi zeros. For the third distribution, we let ui,1 = wi , and for
each j ≥ 2 we let ui,j = max(0, ui,j−1 − xj ), where xj was drawn from a Poisson
distribution with parameter λ = wi

mi
.

The above steps were repeated for the 4-buyer and 5-buyer cases, varying the
number of items from T = 2 to T = 12 in each case. In each of these cases, we
generated a total of 120,000 instances for each auction size, with 40,000 instances
generated from each of the three distributions.

Let us comment on the reasoning behind these choices for the sizes of our auctions.
Our sequential auctions, with at most five bidders and at most sixteen items, could be
solved extremely quickly; this allowed us to analyze our large dataset. But it can be
shown that the number of nodes in the extensive form for a sequential auction with n

buyers and T items is exactly

T∑

t=0

(
t + n − 1

n − 1

)

=
(

T + n

n

)

=
(

T + n

T

)

Thus the size of the extensive form grows exponentially in the number of buyers
and the number of items. So, whilst with additional time we can easily solve slightly
larger instances, we cannot expect to solve significantly larger instances. We remark
that the auction sizes we can solve are comparable to many of the real sequential
auctions described in the introduction.
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Fig. 20 Frequency of Non-Monotonic Price Trajectories in 3-Buyer Auctions
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Fig. 21 Frequency of Non-Monotonic Price Trajectories in 4-Buyer Auctions

5.2 Experimental Results

The results from our 6,240,000 randomly generated sequential auctions are shown
in Fig. 19. In these bar charts there is one bar for each combination of auction
size and data structure (preferential-ordering, first-in-firstout
and last-in-first-out). Each bar shows the number of auctions of that type
that induced non-monotonic prices. For example, for sequential auctions with three
buyers and five items that use the preferential-ordering tie-breaking rule, there were
7 auctions out of 240,000 that had non-monotonic prices. For four and five buyers
there were 120,000 auctions of each type.

Fig. 19 shows all the tests together. Recall that the valuation functions in each
sequential auction were generated in one of three different ways (uniform, Poisson,
binomial). In Fig. 20 we show these three cases for 3-buyer sequential auctions. In
Figs. 21 and 22 we show them for 4-buyer and 5-buyer auctions respectively. We
found no examples with less than 5 items that showed non-monotonicity, so the cases
T = 2, 3, 4 are omitted.

As can be observed, for a fixed number of buyers, there is a slight upward drift in
the proportion of non-monotonic price trajectories as the number of items increases.
Intuitively that seems unsurprising, as with longer price sequences there are more
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Fig. 22 Frequency of Non-Monotonic Price Trajectories in 5-Buyer Auctions

time periods at which deviations from monotonicity can arise. A very interesting
question would be to study the limit of the proportion of non-monotonic price trajec-
tories as the number of items gets very large. Unfortunately, due to the exponential
explosion in the number of game tree nodes discussed above, this is a question
that cannot be studied experimentally. The main conclusion to be drawn from these
experiments is that non-monotonic prices are extremely rare. On the 6,240,000 auc-
tion instances, the preferential-ordering tie-breaking rule produced just
1,100 violations of the declining price anomaly. The first-in-first-out
rule gave 986 violations and the last-in-first-out rule gave 1,334 viola-
tions. The overall observed rate of non-monotonicity over these 18 million tests was
0.000183.

6 Conclusion

In this work, we proved that the declining price anomaly is not guaranteed to hold
in the equilibria of full-information sequential auctions with three or more buyers.
This result applies to both first-price and second-price sequential auctions. More-
over, it applies regardless of the tie-breaking rule used to generate equilibria in these
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sequential auctions. To prove this result we presented a refined treatment of subgame
perfect equilibria that survive the iterative deletion of weakly dominated strategies.
We also experimentally generated a large number of random sequential auction
instances and show that non-monotonic price trajectories are extremely rare. One
potential direction for future work is to relate the number of agents to the minimum
number of items necessary to exhibit a non-monotonic price trajectory at equilib-
rium. Additionally, our insights into the structure of equilibria in sequential auctions
may lead to improvements in other areas of investigation into the properties of these
auctions. For instance, it is known [1] that with two buyers, the price of anarchy of
identical-item sequential auctions is bounded by 1− 1

e
, but no non-trivial bounds are

known for the case of three or more buyers and identical items.
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