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Abstract. The declining price anomaly states that the price weakly
decreases when multiple copies of an item are sold sequentially over time.
The anomaly has been observed in a plethora of practical applications.
On the theoretical side, Gale and Stegeman [10] proved that the anomaly
is guaranteed to hold in full information sequential auctions with exactly
two buyers. We prove that the declining price anomaly is not guaranteed
in full information sequential auctions with three or more buyers. This
result applies to both first-price and second-price sequential auctions.
Moreover, it applies regardless of the tie-breaking rule used to generate
equilibria in these sequential auctions. To prove this result we provide
a refined treatment of subgame perfect equilibria that survive the iter-
ative deletion of weakly dominated strategies and use this framework
to experimentally generate a very large number of random sequential
auction instances. In particular, our experiments produce an instance
with three bidders and eight items that, for a specific tie-breaking rule,
induces a non-monotonic price trajectory. Theoretical analyses are then
applied to show that this instance can be used to prove that for every
possible tie-breaking rule there is a sequential auction on which it induces
a non-monotonic price trajectory. On the other hand, our experiments
show that non-monotonic price trajectories are extremely rare. In over
six million experiments only a 0.000183 proportion of the instances vio-
lated the declining price anomaly.

1 Introduction

In a sequential auction identical copies of an item are sold over time. In a private
values model with unit-demand, risk neutral buyers, Milgrom and Weber [19,26]
showed that the sequence of prices forms a martingale. In particular, expected
prices are constant over time.1 In contrast, on attending a wine auction, Ashen-
felter [1] made the surprising observation that prices for identical lots declined
over time: “The law of the one price was repealed and no one even seemed to
notice!” This declining price anomaly was also noted in sequential auctions for
1 If the values are affiliated then prices can have an upwards drift.
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the disparate examples of livestock (Buccola [7]), Picasso prints (Pesando and
Shum [21]) and satellite transponder leases (Milgrom and Weber [19]). Indeed,
the possibility of decreasing prices in a sequential auction was raised by Sosnick
[23] nearly sixty years ago. In the case of wine auctions, proposed causes include
absentee buyers utilizing non-optimal bidding strategies (Ginsburgh [11]) and
the buyer’s option rule where the auctioneer may allow the buyer of the first
lot to make additional purchases at the same price (Black and de Meza [6]).
Minor non-homogeneities amongst the items can also lead to falling prices. For
example, in the case of art prints the items may suffer slight imperfections or
wear-and-tear, and the auctioneer may sell the prints in decreasing order of qual-
ity (Pesando and Shum [21]). More generally, a decreasing price trajectory may
arise due to risk-aversion, such as non-decreasing, absolute risk-aversion (McAfee
and Vincent [17]) or aversion to price-risk (Mezzetti [18]); see also Hu and Zou
[13]. Further potential economic and behavioural explanations have been pro-
vided in [2,11,25]. Of course, most of these explanations are context-specific.
However, in practice the anomaly is ubiquitous: it has now been observed in
sequential auctions for, among several other things, antiques (Ginsburgh and
van Ours [12]), commercial real estate (Lusht [16]), flowers (van den Berg et al.
[5]), fur (Lambson and Thurston [15]), jewellery (Chanel et al. [8]), paintings
(Beggs and Graddy [4]) and stamps (Thiel and Petry [24]).

Given the plethora of examples, the question arises as whether this property
is actually an anomaly. In groundbreaking work, Gale and Stegeman [10] proved
that it is not in sequential auctions with two bidders. Specifically, in second-
price sequential auctions with two multiunit-demand buyers, prices are weakly
decreasing over time at the unique subgame perfect equilibrium that survives the
iterative deletion of weakly dominated strategies. This result applies regardless
of the valuation functions of the buyers, and also extends to the correspond-
ing equilibrium in first-price sequential auctions. It is worth highlighting that
Gale and Stegeman consider multiunit-demand buyers whereas prior theoretical
work had focused on the simpler setting of unit-demand buyers. As well as being
of more practical relevance (see the many examples above), multiunit-demand
buyers can implement more sophisticated bidding strategies. Therefore, it is
not unreasonable that equilibria in multiunit-demand setting may possess more
interesting properties than equilibria in the unit-demand setting. The restriction
to full information in [10] is extremely useful here as it separates away informa-
tional aspects and allows one to focus on the strategic properties caused purely
by the sequential sales of items and not by a lack of information.

1.1 Results and Overview of the Paper

The result of Gale and Stegeman [10] prompts the question of whether or not
the declining price anomaly is guaranteed to hold in general, that is, in sequen-
tial auctions with more than two buyers. We answer this question in the negative
by exhibiting a sequential auction with three buyers and eight items where prices
initially rise and then fall. In order to run our experiments that find this coun-
terexample (to the conjecture that prices are weakly decreasing for multi-buyer
sequential auctions) we study in detail the form of equilibria in sequential auctions.
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First, it is important to note that there is a fundamental distinction between
sequential auctions with two buyers and sequential auctions with three or more
buyers. In the former case, each subgame reduces to a standard auction with inde-
pendent valuations. In contrast, in a multi-buyer sequential auction each subgame
reduces to an auction with interdependent valuations. We present these models in
Sects. 2.1 and 2.2. Consequently to study multi-buyer sequential auctions we must
study the equilibria of auctions with interdependent valuations. A theory of such
equilibria was recently developed by Paes Leme et al. [20] via a correspondence
with an ascending price mechanism. In particular, as we discuss in Sect. 2.3, this
ascending price mechanism outputs a unique bid value, called the dropout bid βi,
for each buyer i. For first-price auctions it is known [20] that these dropout bids
form a subgame perfect equilibrium and, moreover, the interval [0, βi] is the exact
set of bids that survives all processes consisting of the iterative deletion of strate-
gies that are weakly dominated. In contrast, we show that for second-price auctions
it may be the case that no bids survive the iterative deletion of weakly dominated
strategies; however, we prove in Sect. 2.3 that the interval [0, βi] is the exact set
of bids for any losing buyer that survives all processes consisting of the iterative
deletion of strategies that are weakly dominated by a lower bid.

In Sect. 3 we describe the counter-example. We emphasize that the form of the
valuation functions used for the buyers are standard, namely, weakly decreasing
marginal valuations. Furthermore, the non-monotonic price trajectory does not
arise because of the use of an artificial tie-breaking rule; the three most natural
tie-breaking rules, see Sect. 2.4, all induce the same non-monotonic price trajec-
tory. Indeed, we present an even stronger result in Sect. 4: for any tie-breaking rule,
there is a sequential auction on which it induces a non-monotonic price trajectory.
This lack of weakly decreasing prices provides an explanation for why multi-buyer
sequential auctions have been hard to analyze quantitatively. We provide a second
explanation in the full paper, where we present a three-buyer sequential auction
that does satisfy weakly decreasing prices but which has subgames where some
agent has a negative value from winning against one of the two other agents. Again,
this contrasts with the two-buyer case where every agent always has a non-negative
value from winning against the other agent in every subgame.

Finally in Sect. 5, we describe the results obtained via our large scale exper-
imentations. These results show that whilst the declining price anomaly is not
universal, exceptions are extremely rare. Specifically, from a randomly generated
dataset of over six million sequential auctions only a 0.000183 proportion of the
instances produced non-monotonic price trajectories. Consequently, these exper-
iments are consistent with the practical examples discussed in the introduction.
Of course, it is perhaps unreasonable to assume that subgame equilibria arise in
practice; we remark, though, that the use of simple bidding algorithms by bidders
may also lead to weakly decreasing prices in a multi-buyer sequential auction. For
example, Rodriguez [22] presents a method called the residual monopsonist proce-
dure inducing this property in restricted settings.
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2 The Sequential AuctionModel

Here we present the full information sequential auction model. There are T iden-
tical items and n buyers. Exactly one item is sold in each time period over T time
periods. Buyer i has a value Vi(k) for winning exactly k items. Thus Vi(k) =
∑k

�=1 vi(�), where vi(�) is the marginal value buyer i has for an �th item. This
induces an extensive form game. To analyze this game it is informative to begin by
considering the 2-buyer case studied by Gale and Stegeman [10].

2.1 The Two-Buyer Case

During the auction, the relevant history is the number of items each buyer has
currently won. Thus we may compactly represent the extensive form (“tree”) of
the auction using a directed graph with a node (x1, x2) for any pair of non-negative
integers that satisfies x1 + x2 ≤ T . The node (x1, x2) induces a subgame with
T −x1 −x2 items for sale and where each buyer i already possesses xi items. Note
there is a source node, (0, 0), corresponding to the whole game, and sink nodes
(x1, x2), where x1 + x2 = T . The values Buyer 1 and Buyer 2 have for a sink node
(x1, x2) are Π1(x1, x2) = V1(x1) and Π2(x1, x2) = V2(x2), respectively. Take a
node (x1, x2), where x1 + x2 = T − 1. This node corresponds to the final round
of the auction, where the last item is sold, and has directed arcs to the sink nodes
(x1+1, x2) and (x1, x2+1). For the case of second-price auctions, it is then a weakly
dominant strategy for Buyer 1 to bid its marginal value v1(x1 +1) = V1(x1 +1)−
V1(x1); similarly for Buyer 2. Of course, this marginal value is just v1(x1 + 1) =
Π1(x1+1, x2)−Π1(x1, x2+1), the difference in value between winning and losing
the final item. If Buyer 1 is the highest bidder at (x1, x2), that is, Π1(x1 +1, x2)−
Π1(x1, x2 + 1) ≥ Π2(x1, x2 + 1) − Π2(x1 + 1, x2), then we have that

Π1(x1, x2) = Π1(x1 + 1, x2) − (
Π2(x1, x2 + 1) − Π2(x1 + 1, x2)

)

Π2(x1, x2) = Π2(x1 + 1, x2)

Symmetric formulas apply if Buyer 2 is the highest bidder. Hence we may recur-
sively define a value for each buyer for each node. The iterative elimination of
weakly dominated strategies leads to a subgame perfect equilibrium [3,10].

Example: Consider a two-buyer sequential auction with two items, where the
marginal valuations are {v1(1), v1(2)} = {10, 8} and {v2(1), v2(2)} = {6, 3}. This
game is illustrated in Fig. 1. The base case with the values of the sink nodes is
shown in Fig. 1(a). The first row in each node refers to Buyer 1 and shows the num-
ber of items won (in plain text) and the corresponding value (in bold); the second
row refers to Buyer 2. The outcome of the second-price sequential auction, solved
recursively, is then shown in Fig. 1(b). Arcs are labelled by the bid value; here arcs
for Buyer 1 point left and arcs for Buyer 2 point right. Solid arcs represent win-
ning bids and dotted arcs are losing bids. The equilibrium path is shown in bold.
Figure 1(c) shows the corresponding first-price auction, where we make the stan-
dard assumption of a fixed small bidding increment, and the notation p+ and p
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are respectively used to denote a winning bid of value p and a losing bid equal to
the maximum value smaller than p. For simplicity, all the figures we present in the
rest of the paper will be for first-price auctions; equivalent figures can be drawn for
the case of second-price auctions. Observe that this example exhibits the declining
price anomaly: in the equilibrium, the first item has price 5 and the second item
has price 3. As stated, Gale and Stegeman [10] showed that this example is not an
exception.

Theorem 1 [10]. In a 2-buyer second-price sequential auction there is a unique
equilibrium that survives the iterative deletion of weakly dominated strategies.
Moreover, at this equilibrium prices are weakly declining. ��

(a) 0 : -
0 : -

1 : -
0 : -

0 : -
1 : -

2 : 18
0 : 0

1 : 10
1 : 6

0 : 0
2 : 9

(b) 0 : 7
0 : 1

1 : 12
0 : 0

0 : 7
1 : 6

2 : 18
0 : 0

1 : 10
1 : 6

0 : 0
2 : 9

5 6

8 6 10 3

(c) 0 : 7
0 : 1

1 : 12
0 : 0

0 : 7
1 : 6

2 : 18
0 : 0

1 : 10
1 : 6

0 : 0
2 : 9

5 5+

6+ 6 3+ 3

Fig. 1. Sequential auction examples

We remark that the subgame perfect equilibrium that survives iterative elim-
ination is unique in terms of the values at the nodes. Moreover, given a fixed tie-
breaking rule, the subgame perfect equilibrium also has a unique equilibrium path
in each subgame. In addition, Theorem 1 also applies to first-price sequential auc-
tions. The question of whether or not it applies to sequential auctions with more
than two buyers remained open. We resolve this question in the rest of this paper.
To do this, let’s first study equilibria in the full information sequential auction
model when there are more than two buyers.

2.2 The Multi-buyer Case

Theunderlyingmodel of [10] extends simply to sequential auctionswithn ≥ 3 buy-
ers. There is a node (x1, x2, . . . , xn) for each set of non-negative integers satisfying∑n

i=1 xi ≤ T . There is a directed arc from (x1, x2, . . . , xn) to (x1, x2, . . . , xj−1, xj+
1, xj+1, . . . xn) for each 1 ≤ j ≤ n. Thus each non-sink node has n out-going arcs.
This is problematic: whilst in the final time period each buyer has a value for win-
ning and a value for losing, this is no longer the case recursively in earlier time
periods. Specifically, buyer i has a value for winning, but n − 1 (different) values
for losing depending upon the identity of the buyer j �= i who wins. Thus each node
in the multi-buyer case corresponds to an auction with interdependent valuations.
Formally, this is a single-itemauctionwhere each buyer ihas a value vi,i forwinning
the item and a value vi,j if buyer j wins the item, for each j �= i. These auctions,
also called auctions with externalities, were introduced by Funk [9] and by Jehiel
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and Moldovanu [14]. Their motivations were applications where losing participants
were not indifferent to the identity of the winner; examples include firms seeking to
purchase a patented innovation, take-over acquisitions of a smaller company in an
oligopolistic market, and sports teams competing to sign a star athlete. Therefore
to understand multi-buyer sequential auctions we must first understand equilibria
in auctions with interdependent valuations. This is not a simple task; indeed, such
an understanding was only recently provided by Paes Leme et al. [20].

2.3 Equilibria in Auctions with Interdependent Valuations

We can explain the result of [20] via an ascending price auction. Imagine a two-
buyer ascending price auction where the valuations of the buyers are v1 > v2.
The requested price p starts at zero and continues to rise until the point where the
second buyer drops out. Of course, this happens when the price reaches v2, and
so Buyer 1 wins for a payment p+ = v2, which is exactly the outcome expected
from a first-price auction. To generalize this to multi-buyer settings we can view
this process as follows. At a price p, buyer i remains in the auction as long as there
is at least one buyer j still in the auction who buyer i is willing to pay a price p to
beat; that is, vi,i − p > vi,j . The last buyer to drop out wins at the corresponding
price. Even in this setting, this procedure produces a unique dropout bid βi for each
buyer i, as illustrated in Fig. 2. In these diagrams the label of an arc from buyer i
to buyer j is wi,j = vi,i − vi,j . That is, buyer i is willing to pay up to wi,j to win if
the alternative is that buyer j wins the item. Now consider running our ascending
price procedure for these auctions. In Fig. 2(a), Buyer 1 drops out when the price
reaches 18. Since Buyer 1 is no longer active, Buyer 4 drops out at 23. Buyer 3 wins
when Buyer 2 drops out at 31. Thus the drop-out bid of Buyer 3 is 31+. Observe
that Buyer 2 loses despite having very high values for winning against Buyer 1 and
Buyer 4. The example of Fig. 2(b) is more subtle. Here Buyer 2 drops out at price
24. But Buyer 3 only wanted to beat Buyer 2 at this price so it then immediately
drops out at the same price. Now Buyer 1 only wanted to beat Buyer 2 and Buyer 3
at this price, so it then immediately drops out at the same price. This leaves Buyer 4
the winner at price 24+.

(a) Buyer 1

Buyer 2 Buyer 3

Buyer 4
18

13

14

97

31

74

33

12
11

10
23

35 (b) Buyer 1

Buyer 2 Buyer 3

Buyer 4
37

22

59

17

13

24

63

19
21

10
14

35

Fig. 2. Drop-Out Bid Examples. In these two examples the dropout bid vectors
(β1, β2, β3, β4) are (18, 31, 31+, 23) and (24, 24, 24, 24+), respectively.
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As well as being solutions to the ascending price auction, the dropout bids have
a much stronger property that makes them the natural and robust prediction for
auctions with interdependent valuations. Specifically, Paes Leme et al. [20] proved
that, for each buyer i, the interval [0, βi] is the set of strategies that survive any
sequence consisting of the iterative deletion of weakly dominated strategies. This is
formalized as follows. Take an n-buyer game with strategy sets S1, S2, . . . , Sn and
utility functions ui : S1 × S2 × · · · × Sn → R. Then {Sτ

i }i,τ is a valid sequence for
the iterative deletion of weakly dominated strategies if for each τ there is a buyer i
such that (i) Sτ

j = Sτ−1
j for each buyer j �= i and (ii) Sτ

i ⊂ Sτ−1
i where for each

strategy si ∈ Sτ−1
i \ Sτ

i there is an ŝi ∈ Sτ
i such that ui(ŝi, s−i) ≥ ui(si, s−i) for

all s−i ∈ ∏
j:j �=i Sτ

j , and with strict inequality for at least one s−i. We say that
a strategy si for buyer i survives the iterative deletion if for any valid sequence
{Sτ

i }i,τ we have si ∈ ⋂
τ Sτ

i .

Theorem 2 [20]. Given a first-price auction with interdependent valuations, for
each buyer i, the set of bids that survive the iterative deletion of weakly dominated
strategies is exactly [0, βi]. ��

An exact analogue of Theorem 2 does not hold for second-price auctions with
interdependent valuations. Indeed, there exist examples in which the set of strate-
gies that survive iterative deletion is empty. However, consideration of these exam-
ple shows that the problem occurs when a strategy is deleted because it is weakly
dominated by a higher value bid. Observe that this can never happen for a poten-
tially winning bid. Thus Theorem 2 still holds in first-price auctions when we
restrict attention to sequences consisting of the iterative deletion of strategies that
are weakly dominated by a lower bid. We can also show that the corresponding
theorem holds for second-price auctions. The full technical details of the proof are
deferred to the full paper.

Theorem 3. Given a second-price auction with interdependent valuations, for
each losing buyer i, the set of bids that survive the iterative deletion of strategies
that are weakly dominated by a lower bid is exactly [0, βi]. ��

We are now almost ready to be able to find equilibria in the sequential auction
experiments we will conduct. This, in turn, will allow us to present a sequential
auction with non-monotonic prices. Before doing so, one final factor remains to be
discussed regarding the transition from equilibria in auctions with interdependent
valuations to equilibria in sequential auctions.

2.4 Equilibria in Sequential Auctions: Tie-Breaking Rules

As stated, the dropout bid of each buyer is uniquely defined. However, our descrip-
tion of the ascending auction may leave some flexibility in the choice of winner.
Specifically, it may be the case that simultaneously more than one buyer wishes to
drop out of the auction. If this happens at the end of the ascending price procedure
then any of these buyers could be selected as the winner. To fully define the ascend-
ing auction we must incorporate a tie-breaking rule to order the buyers when more
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than one wish to drop out simultaneously. In an auction with interdependent valu-
ations the tie-breaking rule only affects the choice of winner, but otherwise has no
structural significance. However, in a sequential auction, the choice of winner at
one node may affect the valuations at nodes higher in the tree. In particular, the
equilibrium path may vary with different tie-breaking rules, leading to different
prices, winners, and utilities.

As we will show in Sect. 4 there are a massive number of tie-breaking rules
even in small sequential auctions. We emphasize, however, that our main result
holds regardless of the tie-breaking rule: for any tie-breaking rule there is a
sequential auction on which it induces a non-monotonic price trajectory. First,
though, we will show that non-monotonicity occurs for perhaps the three most
natural choices, namely preferential-ordering, first-in-first-out and
last-in-first-out. Interestingly, these rules correspond to the fundamental
data structures of priority queues, queues, and stacks in computer science.

Preferential Ordering (Priority Queue): In preferential-ordering each
buyer is given a distinct rank. In case of a tie the buyer with the worst rank is
eliminated. Without loss of generality, we may assume that the ranks correspond
to a lexicographic ordering of the buyers. That is, the rank of a buyer is its index
label and given a tie amongst all the buyers that wish to dropout of the auction we
remove the buyer with the highest index. The preferential ordering tie-breaking
rule corresponds to the data structure known as a priority queue.

First-In-First-Out (Queue): The first-in-first-out tie-breaking rule cor-
responds to the data structure known as a queue. The queue consists of those buy-
ers in the auction that wish to dropout. Amongst these, the buyer at the front of
the queue is removed. If multiple buyers request to be added to the queue simul-
taneously, they will be added lexicographically. Note though that this is different
from preferential ordering as the entire queue will not, in general, be ordered lex-
icographically. For example, when at a fixed price p we remove the buyer i at the
front of the queue this may cause new buyers to wish to dropout at price p, who
will be placed behind the other buyers already in the queue.

Last-In-First-Out (Stack): The last-in-first-out tie-breaking rule corre-
sponds to the data structure known as a stack. Again the stack consists of those
buyers in the auction that wish to dropout. Amongst these, the buyer at the top
of the stack (i.e. the back of the queue) is removed. If multiple buyers request to
be added to the stack simultaneously, they will be added lexicographically. At first
glance, this last-in-first-out rule appears more unusual than the previous two,
but it still has a natural interpretation: it corresponds to settings where the buyer
whose situation has changed most recently reacts the quickest.

In order to understand these tie-breaking rules it is useful to see how they
apply on an example. In Fig. 3 the dropout vector is (β1, β2, β3, β4, β5) =
(40, 40, 40, 40, 40), but the three tie-breaking rules select three different winners.

On running the ascending price procedure, both Buyer 3 and Buyer 4 wish
to drop out when the price reaches 40. In preferential-ordering, our choice
set is then {3, 4} and we remove the highest index buyer, namely Buyer 4.
With the removal of Buyer 4, neither Buyer 1 nor Buyer 5 have an incentive to
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Buyer 1

Buyer 2 Buyer 3

Buyer 4

Buyer 5

25

83

34

31

38

31

74

91

40

37
1829

40

36

23

19
30

33 35

54

Fig. 3. An example to illustrate the three tie-breaking rules.

continue bidding so they both decide to dropout.Thus our choice set is now {1, 3, 5}
and preferential-ordering removes Buyer 5. With the removal of Buyer 5, now
Buyer 2 no longer has an active participant it wishes to beat so the choice set is
updated to {1, 2, 3}. The preferential-ordering rule now removes the buyers
in the order Buyer 3, then Buyer 2 and lastly Buyer 1. Thus Buyer 1 wins under
the preferential-ordering rule.

Now consider first-in-first-out. To allow for a consistent comparison
between the three methods, we assume that when multiple buyers are simultane-
ously added to the queue they are added in decreasing lexicographical order. Thus
our initial queue is 4 : 3 and first-in-first-out removes Buyer 4 from the front
of the queue. With the removal of Buyer 4, neither Buyer 1 nor Buyer 5 have an
incentive to continue bidding so they are added to the back of the queue. Thus the
queue is now 3 : 5 : 1 and first-in-first-out removes Buyer 3 from the front of
the queue. It then removes Buyer 5 from the front of the queue. With the removal
of Buyer 5, we again have that Buyer 2 now wishes to dropout. Hence the queue is
1 : 2 and first-in-first-out then removes Buyer 1 from the front of the queue.
Thus Buyer 2 wins under the first-in-first-out rule.

Finally, consider the last-in-first-out rule. Again, to allow for a consis-
tent comparison we assume that when multiple buyers are simultaneously added
to the stack they are added in increasing lexicographical order. Thus our initial
stack is 4

3 and last-in-first-out removes Buyer 4 from the top of the stack.
Again, Buyer 1 and Buyer 5 both now wish to drop out so our stack becomes

5
1
3
.

Therefore Buyer 5 is next removed from the the top of the stack. At this point,
Buyer 2 wishes to dropout so the stack becomes

2
1
3
. The last-in-first-out rule

now removes the buyers in the order Buyer 2, then Buyer 1 and lastly Buyer 3.
Thus Buyer 3 wins under the last-in-first-out rule.

We have now developed all the tools required to implement our sequential auc-
tion experiments. We describe these experiments and their results in Sect. 5. Before
doing so, we present in Sect. 3 one sequential auction obtained via these experi-
ments and verify that it leads to a non-monotonic price trajectory with each of the
three tie-breaking rules discussed above. We then explain in Sect. 4 how to gener-
alize this conclusion to apply to every tie-breaking rule.
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3 AnAuction with Non-monotonic Prices

Here we prove that the decreasing price anomaly is not guaranteed for sequential
auctions with more than two buyers. Specifically, in Sect. 4 we prove the following
result:

Theorem 5. For any tie-breaking rule τ , there is a sequential auction on which it
produces non-monotonic prices.

In the rest of this section, we show that for all three of the tie-breaking
rules discussed (namely, preferential-ordering, first-in-first-out and
last-in-first-out) there is a sequential auction with with non-monotonic
prices. Specifically, we exhibit a sequential auction with three buyers and eight
items that exhibits non-monotonic prices.

Theorem 4. There is a sequential auction which exhibits a non-monotonic price
trajectory for the preferential-ordering, the first-in-first-out and the
last-in-first-out rules.

Proof. Our counter-example to the conjecture is a sequential auction with three
buyers and eight identical items for sale. We present the first-price version where at
equilibrium the buyers bid their dropout values in each time period; as discussed,
the same example extends to second-price auctions. In our example, Buyer 1 has
marginal valuations {55, 55, 55, 55, 30, 20, 0, 0}, Buyer 2 has marginal valuations
{32, 20, 0, 0, 0, 0, 0, 0}, and Buyer 3 has marginal valuations {44, 44, 44, 44, 0, 0,
0, 0}. Let’s now compute the extensive forms of the auction under the three tie-
breaking rules. We begin with the preferential-ordering rule. To compute its
extensive form, observe that Buyer 1 is guaranteed to win at least two items in the
auction because Buyer 2 and Buyer 3 together have positive value for six items.
Therefore, the feasible set of sink nodes in the extensive form representation are
shown in Fig. 4.

6: 270
2: 52
0: 0

6: 270
1: 32
1: 44

6: 270
0: 0
2: 88

5: 250
2: 52
1: 44

5: 250
1: 32
2: 88

5: 250
0: 0

3: 132

4: 220
2: 52
2: 88

4: 220
1: 32
3: 132

4: 220
0: 0

4: 176

3: 165
2: 52
3: 132

3: 165
1: 32
4: 176

2: 110
2: 52
4: 176

Fig. 4. Sink nodes of the extensive form game.

Given the valuations at the sink nodes we can work our way upwards recursively
calculating the values at the other nodes in the extensive form representation. For
example, consider the node (x1, x2, x3) = (4, 1, 2). This node has three children,
namely (5, 1, 2), (4, 2, 2) and (4, 1, 3); see Fig. 5(a). These induce a three-buyer auc-
tion as shown in Fig. 5(b). This can be solved using the ascending price procedure
to find the dropout bids for each buyer. Thus we obtain that the value for the node
(x1, x2, x3) = (4, 1, 2) is as shown in Fig. 5(c). Of course this node is particularly
simple as, for the final round of the sequential auction, the corresponding auction
with interdependent valuations is just a standard auction. That is, when the final
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(a)
4: -
1: -
2: -

5: 250
1: 32
2: 88

4: 220
2: 52
2: 88

4: 220
1: 32
3: 132

(b) Buyer 1

Buyer 2 Buyer 3

30

20

30

20 44

44

(c)
4: 127
1: 32
2: 48

5: 250
1: 32
2: 88

4: 220
2: 52
2: 88

4: 220
1: 32
3: 132

30 20 30+

Fig. 5. Solving a subgame above the sinks.

item is sold, for any buyer i the value vi,j is independent of the buyer j �= i. Nodes
higher up the game tree correspond to more complex auctions with interdependent
valuations. For example, the case of the source node (x1, x2, x3) = (0, 0, 0) is shown
in Fig. 6. In this case, on applying the ascending price procedure, Buyer 1 is the first
to dropout at price 15. At this point, both Buyer 2 and Buyer 3 no longer have a
competitor that they wish to beat at this price, so they both want to dropout. With
the preferential-ordering tie-breaking rule, Buyer 2 wins the item.

0: -
0: -
0: -

1: 125
0: 1
0: 66

0: 110
1: 35
0: 176

0: 110
0: 22
1: 176

Buyer 1

Buyer 2 Buyer 3

15

34

15

13 0

110

0: 110
0: 22
0: 176

1: 125
0: 1
0: 66

0: 110
1: 35
0: 176

0: 110
0: 22
1: 176

15 15+ 15

Fig. 6. Solving the subgame at the root.

Using similar arguments at each node verifies the concise extensive form rep-
resentation of this example under the preferential-ordering tie-breaking rule.
A figure showing the full extensive form tree is present in the full paper. The resul-
tant price trajectory on the equilibrium path is {15, 17, 0, 0, 0, 0, 0, 0}. That is, the
price rises and then falls to zero – a non-monotonic price trajectory.

Exactly the same example works with the other two tie-breaking rules. The
node values under preferential-ordering and first-in-first-out are the
same, but these two rules do produce different winners at some nodes, for example
the node (3, 0, 2). In contrast, the last-in-first-out rule gives an extensive for
where some nodes have different valuations than those produced by the other two
rules. For example, for the node (2, 0, 0) and its subgame the equilibrium paths and
their prices differ. However, for all three rules the equilibrium path and price tra-
jectory for the whole game is exactly the same. We remark that these observations
will play a role when we prove that, for any tie-breaking rule, there is a sequential
auction with non-monotonic prices. ��

Again, we emphasize that there is nothing inherently perverse about this exam-
ple. The form of the valuation functions, namely decreasing marginal valuations, is
standard. As explained, the equilibrium concept studied is the appropriate one for
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sequential auctions. Finally, the non-monotonic price trajectory is not the artifact
of an aberrant tie-breaking rule; we will now prove that non-monotonic prices are
exhibited under any tie-breaking rule.

4 General Tie-Breaking Rules: Non-monotonic Prices

Next we prove that for any tie-breaking rule there is a sequential auction on which
it produces a non-monotonic price trajectory. To do this, we must first formally
define the set of all tie-breaking rules. Our definition will utilize the concept of an
overbidding graph, introduced by Paes Leme et al. [20]. For any price p and any
set of bidders S, the overbidding graph G(S, p) contains a labelled vertex for each
buyer in S and an arc (i, j) if and only if vi,i − p > vi,j . For example, recall the
auction with interdependent valuations seen in Fig. 3. This is reproduced in Fig. 7
along with its overbidding graph G({1, 2, 3, 4, 5}, 40).

Buyer 1

Buyer 2 Buyer 3

Buyer 4

Buyer 5

25

83

34

31

38

31

74

91

40

37
1829

40

36

23

19
30

33 35

54

1

2

34

5

Fig. 7. The overbidding graph G({1, 2, 3, 4, 5}, 40).

But what does the overbidding graph have to do with tie-breaking rules? First,
recall that the drop-out bid βi is unique for any buyer i, regardless of the tie-
breaking rule. Consequently, whilst the tie-breaking rule will also be used to order
buyers that are eliminated at prices below the final price p∗, such choices are irrel-
evant with regards to the final winner. Thus, the only relevant factor is how a deci-
sion rule selects a winner from amongst those buyers S∗ whose drop-out bids are
p∗. Second, recall that a buyer cannot be eliminated if there remains another buyer
still in the auction that it wishes to beat at price p∗. That is, buyer i must be elim-
inated after buyer j if there is an arc (i, j) in the overbidding graph. Thus, the
order of eliminations given by the tie-breaking rule must be consistent with the
overbidding graph. In particular, the winner can only be selected from amongst
the source vertices2 in the overbidding graph G(S∗, p∗). For example, in Fig. 7
the source vertices are {1, 2, 3}. Note that this explains why the tie-breaking rules
preferential-ordering, first-in-first-out and last-in-first-out chose
Buyer 1, Buyer 2 and Buyer 3 as winners but none of them selected Buyer 4 or
Buyer 5. Observe that the overbidding graph G(S∗, p∗) is acyclic; if it contained

2 A source is a vertex v with in-degree zero; that is, there no arcs pointing into v.
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a directed cycle then the price in the ascending auction would be forced to rise
further. Because every directed acyclic graph contains at least one source vertex,
any tie-breaking rule does have at least one choice for winner. Thus a tie-breaking
rule is simply a function τ : H → σ(H), where the domain is the set of labelled,
directed acyclic graphs and σ(H) is the set of source nodes in H. Consequently,
two tie-breaking rules are equivalent if they correspond to the same function τ .
We are now ready to present our main result.

Theorem 5. For any tie-breaking rule, there is a sequential auction with non-
monotonic prices.

We present here a sketch of our proof of this theorem; due to length restrictions
the full proof is deferred. We consider the same example as in Theorem 4, and
analyze the set of all possible tie-breaking rules in three-buyer auctions. We show
that each tie-breaking rule produces an outcome from a set of exactly ten possible
distinct extensive forms for this example. Of these ten classes, exactly five classes
result in non-monotonicity. We then show that for any given tie-breaking rule from
the other five classes it is possible to relabel the buyers in a way that the resulting
equilibrium has a non-monotonic price trajectory.

5 Experiments

Our experiments were based on a dataset of over six million multi-buyer sequential
auctions with non-increasing valuation functions randomly generated from differ-
ent natural discrete probability distributions. Our goal was to observe the pro-
portion of non-monotonic price trajectories and see how this varied with (i) the
number of buyers, (ii) the number of items, (iii) the distribution of valuation func-
tions, and (iv) the tie-breaking rule. For each auction we computed the subgame
perfect equilibrium corresponding to the dropout bids and evaluated the prices on
the equilibrium path to test for non-monotonicity. We repeated this test for each
of the three tie breaking rules described in Sect. 2.4. The main conclusion to be
drawn from these experiments is that non-monotonic prices are extremely rare. Of
the 6,240,000 auctions, the preferential-ordering, first-in-first-out and
last-in-first-out rules gave just 1,100, 986, and 1,334 violations of the declin-
ing price anomaly respectively. The overall observed rate of non-monotonicity over
these 18 million tests was 0.000183. A detailed description of our dataset genera-
tion process and results are in the full paper.
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